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Preface

This short text should serve to me, my friend or everyone interested in any topic included as
a quick and useful resource of information, although originally these lines are but a summary
of some problems I found interesting when studying for the state examination at the Faculty
of Mathematics and Physics in the field of Particle and Nuclear Physics. Any contribution is
welcomed, let it be addressing the field theory or nuclear analysis method; theory or experiment.

Miro Kladiva has contributed with the chapter on the Standard Model, which I do appre-
ciate, just have a look at beautiful Feynman diagrams! :)

I myself am curious what this all will become and what degree may reach, initially the text
was made of pieces of my diploma thesis and some more topics I was interested in.

If you have anything suitable you found nice when studying, or something from your field,
don’t hesitate and send me, especially I will appreciate the TEXsource file. Of course, I will
properly cite authors of each part!

You are wanted!!!

Jiti Kvita
April 2003
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Chapter 1

Passage of particles through matter

1.1 Photons

Ope. = Atomic photoelectric effect (electron ejection, photon absorption
ORayleigh = Coherent scattering (Rayleigh scattering — atom neither ionised nor excited)
Ocompton = Incoherent scattering (Compton scattering off an electron)
Kme = Pair production in nuclear field
ke = Pair production in electron field
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Figure 1.1: Photon total cross section as a function of energy in carbon and lead showing
contributions of different processes (see in text, taken from [11])
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Figure 1.2: Stopping power for positive muons in copper (taken from [11]
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Chapter 2

Neutral pion decay — some kinematics

2.1 Basic kinematics

We study the electromagnetic decay channel of the neutral pion (branching ratio almost 100%)
7 —= vy
The fourmomenta of the two photons P} = (E;,p),pL), ¢ = 1,2 in the pion rest frame
P = %(1,0089*,sin0*) Py = %(1,—cos0*,—sin0*)
Let us study a photon with # € (0,7/2) and drop off the index 1. Then in the laboratory

system, where the pion has the velocity ﬁ = (0,0, ), the photon’s fourmomentum composites
will be

E, =~(E" + Bpj) = %(1 + B cos 0%) (2.1)
Pl = (0] + BE) = 2 (cost" + ) 2.2
pL=pl (2-3)

*

In general, all quantities in the pion rest frame are attributed with a star index *, otherwise

they are assigned to the laboratory system.

2.2 Existence of the maximal angle

Measuring the scattering angle of the photon with respect to the pion’s momentum one finds

pL Pl My sin 6% 1 sin6*
tan 0 = — = — = _ .
pi Py Ex(B+cost) vy (cost* + )

(2.4)

Performing the derivative one can convince oneself that maximum is reached for 6*=7/2, and
in this case we obtain the maximum scattering angle

my 1

E, By

Outside this cone along the axis corresponding to the pion motion no forward photons can be
observed!

tan O =

12



2.3 Angular distribution of photons in the laboratory
frame

Another interesting question is the angular distribution of photons in the laboratory frame.
Knowing this distribution in the C.M.S.

dN* ( 0*>
cos
d cos 0*
it is straightforward to come to the laboratory frame. One mustn’t forget that the expression

is treated as an integrand, so when changing the variable one has to include the absolute value
of Jacobian. Actually, we perform a substitution

[ @ dx—/f y)ldy.

r=cosf", y =cosf.

where in our case

Now we need to express cos #* using cos 6.

For this purpose, (2.4) could be used, but would lead to complicated expressions. Instead,
we shall make use of the inverse Lorentz transformation, which can be performed by replacing
“starred” quantities with “non-starred” and vice versa, and by setting —f instead of 3/ From
(2.4) we thus obtain

tan* = 1_ smé" :
7 (cos 6* — )
Using
B 1

|cosz| = V1 + tan?z

and
R
we arrive at remarkably simple
cosf* = % = g(cos#h).
dcosf*  1-p? 1 1

= = ==
dcosf (1 —pcosh)? ~2(1— [cosh)?

Having all we need we can now write down the result for the angular distribution in the

laboratory frame

dN dN* d dN* 1 1
dcosf  dcosf* ( (cos 0)> dcosf [ (cos 0)} d cos 6* ( (cos 0)> 42 (1 — fBcosh)?’

Assuming a uniform distribution in C.M.S. (pion has a zero spin), the first term is but a
constant and we have
dN 11 1 1 1-8
dcosf 4742 (1 — Bcosh)? - 47 (1 — Beosh)?’
The distribution in the laboratory frame has a singularity in the maximal angle and becomes

flat for v — 1 as expected, plots of this function can be found in Figures 2.2-2.4 (without the
cut on region beyond the maximal angle).

6 € (0, Omax) -

13



2.4 Energy distribution of photons in Lab

From >
E, = 7”(1 + B cos 6%)

we have

dE, 1 Pr Bymg  my o
= —EW = — = = — 2 _ ]_
d cos 6* 2 s 2 2 2

As the cos 8* is uniformly distributed, the energy of photons in the laboratory frame is also
uniformly distributed on interval depending on pion’s velocity 3:

Eq

Ex
(-5 B =I145).

E’Iynlll — 2

Centre of this distribution is just E,/2. Therefore, dealing with some spectrum of energies
of pions, a peak in the gamma spectrum could be observable supporting the existence of a a
neutral pion. This is exactly the way how it was discovered.
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FIG. 4a. Relative gamma-yield from }-in. carbon target
at various proton energies.

Figure 2.1: Spectrum of photons from the reaction p + C'%4 depending on proton’s energy, note
enhancement over the threshold for 7 production; taken from Bjorklund R. et al., Phys. Rev.
77, 213
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Chapter 3

Charged pion decay

Pion decay into leptons
T U T
T — e +
expresses the ratio of corresponding decay rates (experimental value)

[(r— eve)

= (1.230 + 0.004) x 10~ 3.1
e S an) = ) , (3.1)

i.e. the negatively charged pion decays almost exclusively into muon and corresponding an-
tineutrino. This may seem as a surprise, as the phase space factor appearing in I' regardless of
the model clearly prefers the electron channel (e is lighter and thus has a larger momentum in
C.M.S.):
LIPSy(m — ev.)  p: m2—m?
LIPSy (m — pv,) o, - m2-—m?

7'('_

=234, (3.2)

Why, then, is the muon channel preferred by a factor of four orders of magnitude? To sum-
marise basic features of the explanation, I used a very useful resource on Electroweak theory
by J. Hofejsi, ([7], pg. 69-77).

3.1 Heuristic explanation

This rather simple “explanation” is based on lectures on Elementary particle physics held by
R. Leitner and finds some support in ([7], pg. 3240, 69-77).
To start with, let us interest ourselves in the degree of polarisation of electrons emitted in
a (3 decay process
n—p+e+ ve.

Defining the asymmetry in polarisations for a given energy of an electron as

_NR—NL _dwR—de
N NR+NL N dwR-l—de’

[
where Ng, N1, are numbers of electrons emitted with positive and negative helicities (positive

helicity corresponding to spin oriented parallel with the electron’s momentum) and dwg, dwy,
are decay rates corresponding to positive and negative helicities.

17



I will not perform the whole calculation referring for details to ([7]) but only remind here
that one needs to employ the formalism of describing helicity states by a spin fourvector

k| E k _
SR k‘ = —, — ST, k = —SR k‘

and use the projector
N 1
uer (P)Uer(p) = 5 (P +me)(1+7585) -

The result for a Fermi type pure V-A theory (“V minus A”, vector-axial theory), i.e. a
contact four fermion interaction Lagrangian where terms v#(1 — ;) appear between fermion
fields, is remarkably simple:

Pe:_/Bea

proportional to electron’s velocity. Therefore, for relativistic energies, almost only left handed
electrons are produced.

We may now recast the result into probabilities p&, p.' that an electron with a positive or
negative helicity is emitted. Clearly

¢ dwR + de ¢ d’LUR + d’LUL ’

Peng—pg = _ﬂe
and we also require
pe+pi=1.

These relations can be inverted producing

R=g(-5)  pb=g0+4) (3.3

One can see the suppression of emitting right-handed electrons. Similarly, one can find the
same suppression of emitting left—-handed positrons.

Now let us assume that the probabilities of emitting left or right handed electron holds for
any 3 decay process. This is not as artificial as may seem at a first glance. Having pure V-A
theory and assuming massless neutrinos, these are produced exclusively as left handed chiral
components, having negative helicity. Antineutrinos are also produced left handed, but for
v spinors “helicity= —chirality”, so they have a positive helicity. Electrons can be produced
with both helicities, and the corresponding probability is given by (3.3). In general, one may
postulate the following:

e Massless fermions are produced exclusively left handed
e Massless antifermions are produced exclusively right handed
e Massful fermions are produced left handed with the probability (1 + 3;)

e Massful antifermions are produced left handed with the probability %(1 — By)

18
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Figure 3.1: Illustration of the spin conservation in the pion decay

Specially, we will apply this on the pion decay. As the antineutrino is right-handed (positive
helicity) and the pion is a spin zero particle, also electron has to be produced as a right—
handed in order to hold the angular momentum conservation, i.e. just in the suppressed spin
configuration!
According to assumptions made above, one would expect the ration of decay rates to be
roughly equal to
D(r—ev.) pi LIPSy(m —ev.) 1—p[, m2—m?

€

D(r— pv,) p_lf} LIPSy(m — pvy) 1 — B, m2—m2’

Of course, this is just a heuristic expression, not having computed the process properly, we
do not know the precise dynamics, but we may just hope to get an improved result than just
taking into account the phase space. Evaluating the velocities

B = Pr_ B with ph= ——- !
! E* 2 2 f 2m
f ,/p} +m5 “

and performing the algebra we arrive at

€

U(r—ev.) —mi (m2—m] 2
D(r—pv,) m2

which is actually the same expression as will be derived in the following section being in a good
agreement with experiment! (see below)

3.2 More proper explanation

We may well describe the process with a Fermi-like Lagrangian of V-A currents
T GF 7, =P
Liw = —75 coste [y —1)w] [y (1 = 3:)d] .

where the Cabbibo angle fc accounts for the “quark mixing” amplitude. The problem is the
computing of the matrix element of the quark part with the pion state, as this is not known
being a reflection of non-perturbative QCD.

As the first simplification, one can insert a complete set of projection operators to all states
between the leptonic and hadronic part of the Lagrangian; however, of this infinite sum only

19



the vacuum projection survives (creation and annihilation operators in final and initial states
meet with those in Lagrangian, and thus we are left only with the vacuum):

G _
(77| £, |77y = === cosfc (17 [(71] Ty, (1 = v5)11 |0) x (0] ay* (1 = y5)d|7™).

V2

Thus we have separated the quark and lepton matrix elements. The quark-pion matrix element
must “match” the leptonic one in the sense that My; has to be a Lorentz scalar. Therefore,
we need a fourvector index to be contracted with the leptonic part, and having in game only
the pion fourvector ¢, one can write the most general Lorentz covariant contribution of the
hadronic part as

Fr(q*).

As we deal with an on-shell pion decay, ¢> = m2, so the formfactor Fy is simply a constant,

which is often redefined as F, = f,1/2 and is a fundamental parameter describing the sponta-
neous breakdown of chiral symmetry.

Actually, pion is a pseudoscalar particle, with the intrinsic parity quantum number being —1,
and making My; a Lorentz scalar, one needs the axial current in Lagrangian to get a nontriv-
ial contribution (two quantities will change sign under a parity transformation, so the overall
sign remains unchanged). The vector part would have to be coupled to a pseudovector, which,
however, cannot be made from the fourvector q.

Fortunately, the ratio of decay widths

[(m — ev,)
L(m— pv,)

does not depend on the constant f,, so we may compute the corresponding theoretical predic-
tion. Assigning the fourmomentum of pion, lepton and the antineutrino as ¢, p, k£ and using
basic Feynman rules we get

My = =Gy cosOc frq,v(k)y’(1 — vs5)u(p) -
Inserting ¢ = p + k and using Dirac equations
(p —mu(p) =0  Fu(k)=0

we obtain
M = =G cosbc fr myv(k)y’(1 = vs)u(p) .

Squaring the expression and summing over all lepton spins we arrive at

(Mpl2 = GE cos®Oc f7mi Te[f (14 v5)(p + mu) (1 = 7s)]
= G5 cos®Oc f7mi Te[ fp — Kysprs)
= 8G% cos®Oc f2m] (k.p)

As ¢* = (k +p)? = k? + 2k.p + p* = m} + 2k.p, we have finally

IMyi|? = 4G% cos? O f2m?(m2 —m?). (3.4)

Now the decay width is proportional to the phase space

[(m — ly) o< LIPSy (7 — Lyy) x [Mpi]?,

20



so according to (3.2) and (3.4) we get the prediction

€ K €

T(r—ev.) _mZ (m2—m: 2
T(r— pv,)  m2 \'m2—m?
which, when evaluated for m, = 139.6 GeV, m, = 105.6 GeV, m, = 0.5 MeV, gives the value

I'(m— ev.)

=128x10"*
I'(m — puy)

in a good agreement with the experimental value (3.1).
Further discussions can again be found in ([7]).

21



Chapter 4

Kaons

(under construction:-)

4.1 Decay modes, parity violation

At first, people thought kaons were an isospin triplet, but they turned out to be two doublets
K°(ds) K™ (u5)
K~ (3) K°(sd)

To get some help in order to remember what is K° and K° one can remember that K° (d3) is

being born with A® (uds)
p+m — K+ A°
Hadronic decays of kaons
K — 3w
K — 27

clearly violate parity (therefore, parity of K mesons cannot be determined from these decays)
as first mode would imply Pk = P23, whereas the latter Px = P? Semileptonic decays make a
distinction between K° and K°:

K ity +7~

K°—> Iy +m +
being a manifestation of the rule AS = AQ@ and are used in measuring the C'P violation
parameters.

4.2 K°-K° mixing

As parity is violated, at first it was thought that combined C'P symmetry could hold. K°
and K° are strong interaction eigenstates, they can be transformed to each other by the C
operation and have opposite (and defined) strangenesses. Having no weak interaction, they
would be degenerate in masses. However, physical states with well defined masses are a linear
combinations of K° and K° and the degeneracy in masses is lost due to weak interaction.

22



Also, physical states have to be CP eigenstates. As P|K®) = —|K?), we can define the phase
convention as
CP|K®) = |K°)
Using the trick
1 _ 1 _
K%)= Z(K%) + |K) + 5(IK°) - |K?))

we can recast

0 _i 0 -0
K8 = (1K) + |K)
0 _L N 7
K5) = (1K) = |K)
and inversely )
K%)= S (K + K1)
K%)= ——(IK9) — |K9)).

V2

The important thing is that states |K2) and |K?) are built so as
CP|Kg) = |Kg)

CP|K;) = —|K]).

As the CP eigenvalues for 37 and 27 systems are CP(37) = —1 and CP(27) = 1, following
decays are possible
|Kg) — 3m

|K7) — 2,

whereas these are not
|K g) — 27

|KY) — 3.

As the available phase space is larger in the case of two pions in the final state, the corresponding
partial decay width is smaller causing |K2) to be short-lived and |K?) a long-lived when
compared to each other (experimentally c7g = 2.68cm, 1 = 15.51m).

Let us now suppose we have produced a beam of K° mesons. Soon, the short-lived compo-
nent will vanish leaving the long-lived, which, however, includes both K° and K°! As we shall
see, one actually observes K K© oscillations in the originally pure K° beam.

In order to distinguish K° and K° we shall make use of semileptonic decays of kaons and
will measure the probability

(™[ KO (2))]

assuming that system was prepared in pure K° in t=0.
We know the evolution of mass eigenstates under the overall Hamiltonian

|K5(1)) = e st TS 2| K)

KL (t) = eT ™2 KD

23



so the evolution of |K°(t)) is simply

1
V2
Now only K° can undergo the transition into the final state with the positively charged lepton,
SO

‘Ko(t» — (efimgthst/Q‘Kk(;) + efimLthLt/2‘Kg>) )

1 ) ) 2
(e (KU = (w7 (st T2 ) e T ) |

1 . _ . _ 2
— ‘<l+1/l7rf|§ [efzmgtfl’st/2(|K0> + ‘K())) + efszthLt/2(|K0> . |K0>)] ‘

1 % t—Tgt/2 ) tl“t22
:_‘e—zms—s/ +e—sz—L/

4

b

so finally
1
[(Tyr™ KO (1) |2 = 1 [e‘rst + et 4 e~ HTL29 ¢og (mg — mL)t]
and similarly

("ot | KO ()| = ! [e‘rst 4 e7Tet — o= IsHD)29 o5 (mg — mL)t} .

4

The quantity that can be experimentally well tested is the asymmetry in number of observed
positive and negative leptons
N(IT)—=N
A = N0 =N
N

+ -
TN+ N

for which our calculations give the prediction

Alf) — e~ IsHLI2 cos (mg — my )t
( ) - % (e—FSt + e—I‘Lt)

The result is plotted using the experimental value of mg —my = 3.49 +0.006) x10~'2 MeV and
above mentioned widths in Figures 4.1 and 4.2

4.3 CP violation

4.4 Problem of neutral kaon decay, GIM mechanism

24
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Figure 4.1: Asymmetry coefficient as a function of time (in s) demonstrating the K°-K° mixing.
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Figure 4.2: Detail of the previous plot, zoomed in the y axis for larger ¢.
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Chapter 5

n and 1’ mesons

(under construction:-)

5.1 G—Parity and n meson decays
G—Parity is a combination of Parity and a reflection in the isospin space
G = Cexp (inly) .

It is an approximate invariant in strong and electromagnetic processes. For example (Weinberg,
Phys. Rev. 112 (1958), 1345) for nucleon doublet and pion triplet

GYnG™' = iTotby GoG™' =~

T JP =0
n JEP =0

Table 5.1: G-—parity of m and n

Therefore, for strong n meson decays
e n — 7w is forbidden due to parity conservation
e n — mrr is suppressed due to G—parity conservation

e n — mrmw is forbidden due to kinematics (except for the case where all pions are neutral,
but is forbidden by C'P conservation)

Actually, all strong modes of 7 are suppressed in the lowest order making 7’s lifetime about five
orders of magnitude longer than for example of the p meson (m, = 547MeV, I', = 1.18keV,
Ty = 5.7x 1071 s, whereas m, = 771 MeV, ', = 150MeV, 7, = 4.4 x 10~2* ). Decays to three
pions actually do occur, but as a higher order process (isospin symmetry is broken).

The largest branching ratio is  — 2y and n — 37°.

26



5.2 7 and 1’ mixing

States with the same IJ¥ and additive quantum numbers (strangeness. ..) can mix (if they are
in addition charge conjugate eigenstates, the must also have the same value of C'). Specially,
the zero isospin member of the pseudoscalar meson octet 7g mixes with the singlet 7, producing
n and 7. Similar mixing appears to produce w and ¢ in vector mesons.

1 _
= —|uu+ dd+ ss
T \/?—)| >

1 —
Ng = —6|ua—|— dd — 2s5)

NG

1N =mngcosfp —n sinfp
n' = ngsinfp + 7y cos Op
¢ = wg cos By — wy sin by
w = wgsin By + wy cos by

Approximate values for these mixing angles are (experimental results) 6p & 20°, 6y & 35°.
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Chapter 6

Discovery of the ¢ quark — November
revolution and J/v

(under construction:-)

In November 1974, the world of particle physics was astonished by two independent discov-
eries of a very narrow new particle with a mass of approximately 3.1 GeV. One experiment was
a proton machine with a Be target, the other a ete™ collider. Thus, J/¢ was found in two
complementary processes. Citing from works 77, 7?7 we get to know following interesting facts:

Samuel Ting et al:

e We report an observation of a heavy particle J, with mass m = 3.1 GeV and
width approximately zero. The observation was made from the reaction
p+ Be — ete” + X by measuring the ete” mass spectrum at the Brookhaven
National Laboratory’s 30 GeV alternating-gradient synchrotron.

e To ensure that he observed peak is indeed a real particle (J — eTe™) many experimental
checks were made. We list seven examples ...

e The most striking feature of J is the possibility that it may be one of the theoretically
suggested charmed particles or a a’s or Z;’s, etc.

e It is also important to note the absence of an ete™ continuum, which contradicts the
predictions of parton models [an improved version of the theory is not in contradiction
with the data].

Burton Richter et al, Stanford Linear Accelerator Center (SLAC) — Lawrence
Berkeley Laboratory magnetic detector at the SLAC electron—positron storage ring
SPEAR.

e We have observed a very sharp peak in the cross section for ete~™ — hadrons,
ete” and possibly Ty~ at a centre-of-mass energy of 3.105+0.005 GeV. The
upper limit to the full width at half maximum is 1.3 MeV ... we suggest naming
this structure ¢(3105):

e The cross section for hadron production at the peak of the resonance is > 2300 nb, an
enhancement of about 100 times the cross section outside the resonance. The large mass,
large cross section, and narrow width of this structure are entirely unexpected.
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e The 3.2 GeV results reproduced, the 3.3 GeV measurement showed no enhancement, but
the 3.1 GeV measurements were internally inconsistent — six out of eight runs giving a
low cross section and two runs giving a factor of 3 to 5 higher cross section. This pattern
could have been caused by a very narrow resonance at an energy slightly larger then the
nominal 3.1 GeV setting of the storage ring, the inconsistent 3.1 GeV cross sections then
being caused by setting errors in the ring energy.

e [t is difficult to understand how, without involving new quantum numbers or selection
rules, a resonance in this state which decays to hadrons could be so narrow.
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Chapter 7

Additive quark model

1 _
7° and p mesons are combinations of —=|ut — dd)

V2
L\ + dd)
w=—
V2
1 -
= —|ut + dd + s5
Ui \/g‘ >
1 _
Ng = —6|uﬂ+dd— 255)

V6
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Chapter 8

ete~ — hadrons, evidence for colour

A production of hadrons from the ete™ annihilations in the second order of a perturbation
theory is possible via the exchange of a virtual photon (or Z and perhaps Higgs at higher
energies) giving a birth of a quark—antiquark pair. Of course, this is possible only above the
threshold m, < /s.

Expressions for cross sections are of the same form for 4t~ and ¢g production with the only
difference in the charge square of particles involved. Cross section formula involve threshold
factors (coming from the dynamics and phase space) of the type ([6], pg. 767)

2m?2 4m?
(1+—f> 1-—L.
S S

However, these quickly vanish when increasing energy over the threshold and in the expression

o(ete” — hadrons)

Rls) = oetem = putu)

only the charge factors will remain giving the prediction
R(s) =) @2,
q

where summed over all quarks available at the given energy.

One may ask, why we normalise the hadron production cross section on the u* .~ production
and not the ete”. The answer is simple: the latter one diverges in the similar way as the
Rutherford formula (will be updated).

This ratio is experimentally measured as a ration of hadron and pure p*pu~ events in eTe™
collisions. If quarks have some additional degrees of freedom (presumably associated with
colour, therefore denoting as N¢), the corresponding prediction is just grater by this factor

R(s)=Nc ) Q2.

Assuming quark charges +2/3 for u, ¢, t and —1/3 for d, s, b, then predictions for R are as
seen in Table 14.1. In case of three colours N¢ = 3, the predictions are in a good agreement with
experiment giving the support to the idea of three additional degrees of freedom for quarks, i.e.
the colour (see Table 8.2).

For further details see [6], pg. 764-770.
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u, d, s

u, d, s, c

u, d, s, c, b

quarks in game

prediction for R

6 _
R = §NC = 06NC

1 _
R = KONC = 1.1N¢

11 -
R - ch = 12NC

Table 8.1: R values for different quarks in game

quarks in game

u, d, s

u, d, s, c

u, d, s, c, b

prediction for R, No = 3

6
R=-Nc=2

gVe

10 -
R=—Ng=33

9

11 -
R=—N¢g=36

g Ve

Table 8.2: R values for different quarks in game in case of tree colours.
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Figure 8.1: R in the J/1) region, taken from the Particle Data Group ([11])
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Chapter 9

Symmetries

(under construction:-)

9.1 Parity
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Chapter 10

Standard Model

The standard model' (SM) of electroweak interactions is in excellent agreement with present-
day experimental data (LEPII, Tevatron, SLD) [16]. The SM was formulated by S. Glashow,
A. Salam and S. Weinberg [17] in 1960s and a proof of its perturbative renormalisability was
invented by G. 't Hooft in 1971 [18]. The SM involves 17 particles: six leptons (e, ve, i, vy,
T, v;), six quarks (u, d, s, ¢, b, t), three intermediate vector bosons (W=, Z), photon (v) and
scalar Higgs boson (H). Leptons and quarks are regarded as constituents of the “matter”.
Intermediate bosons and the photon are carriers of electroweak forces. The Higgs boson is
related to the mechanism of generation of particle masses and plays thus an important role in
theoretical construction of SM. However, it has not been experimentally detected yet.

In this chapter we present a brief overview of the SM formulation. Further details can be
found in many textbooks (in particular, I relied mostly on [7]).

10.1 Basic principles

The electroweak SM is a gauge theory with SU(2) x U(1) symmetry, which is “spontaneously
broken” down to the electromagnetic U(1); Electroweak symmetry breaking is the so-called
Higgs mechanism, which produces particle masses. Let us first summarise briefly the field
contents of SM. The basic building blocks for elementary fermions are the left-handed SU(2)

doublets
e (”eL) , L) <VML> | 10— (m) ,
er, o T
7@ — (uL 1) — (¢r o — (tr
dL ’ St ’ bL

and right-handed singlets
€r, MR, TR, Ver, Vur, VrR,
UR, dR: CR, SR, th bR

(where e;, = 3(1 — 75)e, er = 5(1 4 75)e etc.). Here we have included right-handed neutrino
fields, just to indicate that massive neutrinos could be incorporated in SM in a natural way;
nevertheless, in what follows we will drop these altogether, since they do not play any role in
our considerations. In general, the fields shown above do not correspond to mass eigenstates;
in order to get particles with definite masses, one has to diagonalise appropriate mass ma-

IThis review is taken from the diploma thesis by Miro Kladiva ([9]) with his personal courtesy and support
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trices (note that in the simplified model with massless neutrinos there is no need for such a
diagonalisation for leptons).

Intermediate vector bosons and the photon correspond to the Yang-Mills fields associated
with the four generators of the local SU(2) x U(1) symmetry. Finally, for implementing the
Higgs mechanism one needs a complex scalar doublet

® = (fj) (10.1)

Now we are going to construct the SM Lagrangian. For simplicity we shall consider only
one lepton family, e.g. (v, €). The gauge invariant term involving leptons and Yang-Mills fields
can be written as B

Liepton = iLy* DL + iegy* D Pep, (10.2)

where D,(LL) and DLR) are covariant derivatives

DW=, —igA® T gy, B
o T O T MRy T LB (10.3)
D =9, —igYYB,

Here the 7; are Pauli matrices, A, and B, stand for the Yang-Mills gauge fields and the Y7,
and Yg denote the “weak hypercharge” (that characterises the transformation properties of the
corresponding field under the U(1) subgroup). Note that the relevant values of the Y are given
by

Q = T3 + Y

with @) and 73 denoting the electric charge and third component of “weak isospin” respectively
(for example, @ = —1 and T3 = —1/2 for left-handed electron, so that Y;, = —1/2).
To incorporate the kinetic terms for Yang-Mills fields in gauge invariant way, one has to

introduce the form . .
Lgauge = —ZF;UF‘““’ — ZGWGW (10.4)
where
Flfy =0,A, — 0, A, + gsabcAZAf’,
G, =90,B, —0,B,

with eg. being the three-dimensional Levi-Civita symbol. It should be noticed that, apart from
kinetic terms, the Lagrangian (10.4) involves also some specific self-interactions of Yang-Mills
fields.

To implement the Higgs mechanism, one adds the Lagrangian

(10.5)

2\ 2
Litiggs = (D"®)! D,® — A (@Tob - %) (10.6)
where @ is the doublet (10.1) and D, stands for the covariant derivative

D, =0, - igAZ% - % 'B, (10.7)

The A appearing in (10.6) is a positive (dimensionless) coupling constant and v is a parameter
with dimension of mass. Note that the form of the “potential” involving the A and v is respon-
sible for the spontaneous breakdown of SU(2) symmetry — this leads to appearance of three

36



Goldstone bosons, before introducing the Yang-Mills fields (i.e. the local gauge symmetry). It
is convenient to employ the parametrisation

o = exp(%w“(aj)T“) (%(v —BH(x))) (10.8)

where 7 represent the Goldstone bosons and H denotes another real scalar — the Higgs boson.
In the SU(2) x U(1) gauge theory, the original Goldstone boson fields are unphysical as they
can be removed by means of appropriate SU(2) gauge transformation. This is tantamount to
fixing a particular gauge, the so-called “unitary”, or simply U-gauge. In such a gauge the ®

becomes
0= (004 1) 1)

Note that, there are also other useful gauge-fixing conditions, e.g. the R-gauges described
in Section. After substituting the ® into the Lagrangian (10.6), we obtain interaction terms
involving H, A%, B, and also quadratic terms for these fields (they are due to the constant shift
v in @y ). The diagonalisation of the quadratic form for Yang-Mills fields yields three massive
and one massless combination of the A#, B,; of course the massless field corresponds to the
photon. The three massive fields (denoted as WMi and Z, respectively) represent intermediate
bosons of weak interactions. Two of them are electrically charged and the third one is neutral
(the charge assignments become clear when one considers the interactions with leptons). The
explicit form of the physical vector fields can be written as

1

+ _ 1 42
Wu _E(AH:FZAN)

Z, = cos Uy A} — sindy B,

A, =sindy B, + cosﬁWAZ

(10.10)

where ¥y, is so-called Weinberg angle (or weak mixing angle) defined by tandy, = ¢'/g. The
corresponding masses, including that of the Higgs boson, (originating in the Higgs-Goldstone
potential) are

my = 2\v?
1
mw = =gv
2 (10.11)
my = 5(92 —|-ng)1/2’1)
maq = 0

Notice that from (10.11) one gets immediately the famous relation

W — cos Dy (10.12)
mz

which is now confirmed by experimental data with great accuracy (note that cosvy can be
simply related to the electromagnetic coupling constant e and weak coupling constant g (10.17))
To generate lepton masses, one has to introduce an additional piece to the Lagrangian,

namely the Yukawa coupling
Lyvukawa = —heiéeR + h.c.2 (1013)
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(a) (b) (c) (d)

Figure 10.1: The vector boson-lepton interactions

(where h.c. stands for Hermitian conjugation). The relevant mass term for electron is

me = hev
Note that in the quark sector of SM one has to start with more general Yukawa couplings, so
as to incorporate the observed flavour mixing. This leads to diagonalisation of general quark
mass matrices and to the subsequent appearance of the Cabibbo-Kobayashi-Maskawa mixing
matrix in the interactions of W-bosons with quarks. Of course the same procedure is necessary
if one wants to include masses of neutrinos and their possible mixing.

Thus, we obtain the SM Lagrangian in the form

Elepton + Egauge + EHiggs + EYukawa

It’s important to stress that there is a relation between the SM parameters and the fundamental
parameter of the low-energy weak interaction physics — the Fermi constant Gz, namely

= —m 10.14
note that this also amounts to an expression for v,
v = <GF\/§> 2
The nowadays value of G is
Gr = (1.16639 & 0.00001) x 107° GeV ™2 (10.15)

In next sections we will discuss this Lagrangian in individual terms and relevant vertexes
in Feynman diagrams.
10.2 Interactions of vector bosons with leptons

These interactions are obtained from Liepion (see (10.2)). Substituting there the explicit form
of the covariant derivatives (10.3) (and take into account the numerical values of the weak
hypercharges), one has

. L : :
Liepton = 1Ly* <8u — ngZE + §g'Bu> L+ iegy* (0, +1ig'B,) er (10.16)
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Expressing the original gauge fields A}, and B, in terms of the W+, Z, A according to (10.10)
we get two types of interactions. First, the “non-diagonal” part of the Lagrangian embodies
the usual weak charged currents (CC) coupled to the W<; this term is written as

(1 —s)e W, + h.c.

g
Loc=—"—=
cC 52

Next, the “diagonal” part of the Lagrangian includes electromagnetic interaction

!

99

Lel -mag. = —W

where the coupling constant can be interpreted as the e (with e?/4r equal to the fine structure
constant «). Note that one thus also obtains the relation

e=gq9'/\/ g%+ g% = gsinty (10.17)

The remaining part of the Lagrangian represents the interaction of a weak neutral current (NC)
with the Z,, which becomes

ey,e A¥

1
(517”70‘(1 — Y5)v + et (v — (L’)/5)€) Zy,

with v = —1/2 + 2sin® ¥y and a = —1/2.

10.3 Vector boson self-interactions

These couplings are obtained from the non-quadratic part of the Lagrangian (see (10.4)). It
is easy to see that there are trilinear and quadrilinear terms in vector boson fields. For the
trilinear part we have

Lyww,y = —ie (ANW;?“W“ + W;WJ?MA” + W;A,,?“W—”) (10.18)
= Ap=d =
SHWT L WoWForZY +WEZ, 0

Lwwz = —igcos Uy (ZNWV_ “W"’) (10.19)

These two Lagrangians are antisymmetric with respect to permutations of W W, A, and
contain derivatives of fields. Thus the Feynman rules for the corresponding two vertices are
expressed by means of a function linear with respect to particle momenta

V)\,uu(kap: q) = (k - p)ug)\u + (p - Q)/\g;w + (C] - k),ug)\u

(the notation is shown in Fig. 10.2(a), with all momenta taken as outgoing), multiplied by
appropriate coupling constants shown in (10.18) and (10.19). There are several useful properties
of the function V', namely antisymmetry with respect to indices and permutation of momenta,
and the so-called 't Hooft identity

puV)\uu = (_QZQ)\I/ + Q)\CIU) - (_kQQ)\u + k)\ku) (1020)

widely used in practical calculations of Feynman diagrams.
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Figure 10.2: Self-interactions of vector Bosons interactions

The quadrilinear interactions are richer, but do not contain the field derivatives. They can
be obtained from the Lagrangian (10.4) in straightforward way; one gets

1

Lwwww = 59" (W, W WIW™ — WoW W, W) (10.21)
Lwwoy = — (W, WHAA — W AW, AY) (10.22)
Lwwzz = —g° cos® Oy (W, WHZ,2" — W, Z'W, 2" (10.23)
Lwwzy = g° sinty cos Oy (—2W,; WHA,ZY + W, ZFWFAY + W, AFWFZ1)  (10.24)

10.4 Higgs boson interactions

Let us start with the Higgs boson self-couplings; these are obtained readily from the potential
part of Lyiges (see (10.6)) when substituting there the U-gauge form of the doublet ¢ ((10.9)).
One has

2 2

There appear quartic and cubic self-interaction terms for the H, namely

1 5 v 2
Epotential =-A _(U + H) Y

2
1 m%y 4

Ly = —MWH? = 1 (10.25)
1 1 ,m?

Lamnn = =M H' = - L H* (10.26)
w

The interactions of the H with vector bosons and mass terms for the latter follow from the
covariant derivatives in the Ljges. The relevant expression is

]' !/ I
L=gl+ H)? (¢°((A))* + (A2)? ) +g* A3 A% — gg' A2 B* + ¢” B, B")

Rewriting this in term of the W* and Z (see (10.10)), one gets

1 _ 1 g
L= (v+HPgW, W + (v + H)’ Z,Z" (10.27)

8 cos Dy
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Figure 10.3: Higgs boson interactions
where one can identify these particular interactions:
gmw
L =——7,7')H 10.29
WWZ 2 cos? Oy ( )
1
1 g°
L = (P?+¢HZ2,7"HH = —~——7,7"HH 10.31
ZZHH 8(9 +9%)Z, 8 cos? Oy M ( )

Note that the v?> coming from the factor (v + H)? in (10.27) generates vector boson masses
(10.11); therefore the coupling constants can be written as (gyvg/m%) = 2/v, (gyvaa/m%) =
v™2 (V is generic notation for vector boson), which after substitution v = 2my /g yields the
expressions shown above. It also makes it clear why there is no photon interaction with Higgs
boson.

There are also interactions of the Higgs boson with fermions, obtained from (10.13)

h
Lyvukawa = ———=(v + H)(€rer + Ere
Yuka \/5( )(LR RL)

which after using érer + égrer, = ée gives mass term with m, = vhe/\/i and consequently the
Higgs-lepton interaction becomes

LeeH = —g e eeH
2mW

The Higgs interaction with other fermions has the same form as the eeH interaction, after
replacement m, — my, because they are due to the factor (v + H).
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Chapter 11

W and Z bosons — discovery and
properties

(under construction:-)
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Chapter 12

QCD and parton model summary

12.1 DIS and parton model

(under construction:-)

12.2 Some properties of parton distribution functions

I present here only some basic properties of parton distribution functions with emphasis on the
straightforward physical interpretation, not concerning the scaling dependence nor their evolu-
tion.

e Naturally we require relations
fP(x) = f7(x), fi(x)=fI(z),

i.e. the probability density of “finding” a quark in proton should be the same as finding
an antiquark in antiproton. Let us denote fP(z) simply as u(x) and similarly for other
quarks and gluons.

e integrals of the type
1

/ q(z) dz

0

have obviously the meaning of the number of quarks of the given type in proton. However,
they diverge suggesting their number to be infinite in some way.

e What makes sense is the momentum carried by a parton ¢ (either quark or gluon) which

is given by
1

PqE/xq(x)dx.

0
e Experimental value for momentum carried by all quarks

/x [u(z) + u(x) + d(z) + d(z) + s(z) + 5(z) + c(x) + &(z) + b(x) + b(z)] dz = 0.5

0
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suggests the there are neutral constituents — gluons — carrying about half of the proton’s
momentum!

My values from numerical integrations over z € (107%,1) using the CTEQ6 ([13]) set
of PDF in LO for up=m; are

P, =0478 P,=0211 P;=0.112
P, =0.0272 P, =0.0348 P;=0.0395
P, =0.0206 P,=0.0136 P.q=0.520

Defining valence and sea quark distributions as
Uval () = u(x) — u(x)
Usea () = (),
SO0 U(T) = Uyal(T) + Ugea (),
whereas  s(2) = Sgea(z), 5() = Ssea(T)  Sva(z) =0

we may postulate the following relations as a conservation of proton’s
1

Charge : 0/ {g[uval(x) + cval(z)] - %[dval(m) + Sval(m) + bva,l(x)]} dz = 15

1

1
Baryon number : / 3 [Uya () + dvar(x) + Svar(2) + car(2)byar(z)] dz = 1,
0

1
Strangeness : / Swal(z)dz = 0,

0

Charm:/cval(x)dx = 0,

1
Beauty : /bval(x) dx = 0,
0

which imply
1 1

/uval(ac) dz =2 /dval(x) dz=1.
0 0

These relations are important connection between the parton and the additive (con-
stituent) quark model, where proton belongs to SU(3) group octet with the “quark con-
tent” (uud). My results using the CTEQG6 ([13]) set of PDF in LO for pp=m; are

1 1
/ Uvar () dz = 1.995 / dyar(z) dz = 0.998.
106 10-6
Actually, relations mentioned above are used as conditions for extracting PDF's from ex-

perimental data. However, once extracted, they are universal, i.e. regardless of a process
we try to describe they provide us with a good agreement with experiment.
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For further information see ([8]) and ([10]).
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Part 111

Examples and appendixes

47



Chapter 13

Some example calculations

13.1 Tree level decay width of the process t W'+
According to the relevant part of the SM Lagrangian for this process

— 9 +p 117 —p 13.1
L 2\/§(JPW +J,W ) (13.1)
Ty = Vip by,(1 — ¥5)t

we may write the invariant amplitude

—iMyi = —i%vﬂ, a(k)yu(1 = v5)u(P)e"(p, \) (13.2)

and squaring the absolute value of the expression (I do not explicitly write spin arguments
of quarks)

Myl = g—QlVibIQt’t(k)ﬂp, A1 =5)u(P)u(P)¢" (p, A) (1 = v5)u(k), (13.3)
8

where Vj;, is the element of the CKM matrix referring to the probability transition amplitude
between these two quarks. Summing over final spins and averaging over the top quark spin we
get

1

Myi|” = %I%I2 D 0, Ve VTelyu (L= 95) (P + M)y (1= ) (B +m)].  (13.4)

A\ 4

b

Figure 13.1: Tree level Feynman diagram for t— W'+ b.
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Using identities
1

*V v 1 v
> e (p, Ne® (p,N) = —g" + —5p'p (13.5)
A=—1 My
1 2
{%, 75} =0 and 5(1 + 75) = 5(1 + 75) (13-6)

we find that the term proportional to mym; disappears due to anticommutation relations (and
terms linear in masses due to the fact that trace of an odd number of gamma matrices is zero).
Thus we have ) .
g
M = SVl |~ + ! | Pkl =), (137
8 miy
of which the part containing 75 actually does not contribute after contracted with the sym-
metrical tensor in square brackets. Employing well known trace identities we arrive to an
expression
2 g 2 2 jnz 1
|Mfz| = 5|V2b| [_g + m—2

p”p”} [Pk, — guw(P.k) + P,k,]
w

= Pl [ 0D P) + (PH) = o o)) (138)

Performing the evaluation of dot products in the rest system of the decaying top quark we
find

P=(m,0) k= (E,p°) p=(Ey, —p) (13.9)
m? +mi — m? m? —m? + m?
Ef = t b w EX = t b w 13.10
b th w th ( )
4m? ’ '
Substituting these into
- 2 * *
g 2 mtEW * Tk %2 * mtEW %2 %2
Myl> = 2|V, E'E Ef — E2 —
Mol = SVl |85 iy 1)+ = G 5 = )
and after a half-page algebra we get the result (neglecting terms mZ/m#, )
2 2 ) My miy miy
(Ml = 97| Via| ez (U7 ) 2 ) (13.12)
Recalling the expression for the decay width for the process 1 — a +b
1
dl' = | My 2dQ 13.13
and rewriting the coupling constant ¢ it terms of my, and Fermi coupling constant
G 2
or - 9 (13.14)

\/5_8mw

we finally obtain the decay width for t =W + b

Grm3 < m%,V>2 ( m%v)
I, = 1 - — 1+2—— 13.15
! 87T\/§ 2 2 ( )




q t

Figure 13.2: Leading Feynman diagram for the process g7 — tt.

Quark propagator: 0%

(p — m + ie)
—iG
Gluon propagator:  §*—2#_
propue (p? + ie)
Interaction vertex: — —ig(T)i;jVy

Three gluon vertex: —gf*V*?(p,q,r)

= —gf[g" (p—q)* + ¢ (g—r)* + g™ (r—p)"]

Table 13.1: QCD Feynman rules (Greek letters stand for Lorentz indices, Latin for colours).

13.2 g — tt cross section

The relevant Feynman diagram is drawn in Figure 13.2. According to my notation the four-
momentum conservation is p+k =p' + k' = ¢, ¢*> = 5. Using the following abbreviations for
quark masses m,=m and m; =M, the invariant amplitude for the process reads:

—%[ﬁé(k)( ig7u L5 )ug (p)] [ () (=g Ty Jua ()] (13.16)

2

9 ara [ i =
Mpi = ?(%le)[vé(k)v“uq(p)][Uf ') vuvi (k)] (13.17)
Summing over all final colours and averaging over initial ones we get

1
= ZMﬂMﬁ (T“leTl”*T”*)

colours

X Tr[y#uq (p)tg(P)7"vq (k)0 (k)] Tr[yuor (k") or (k') yuua(p') e (p')] (13.18)

and reordering the elements of SU(3) matrices we get

N TETRTRT = Te(T*TTe(T*T) = Y Te(T*T°) Tr(T°T°) (13.19)
a,b,i,j,k,l a,b a,b

a0



— Z 5ab6ub

where we used the colour trace 1dent1ty

Tr(T°T?) =

Now summing and averaging over spins we obtain

|Mfz| = __Zlez| =

spins
colours

18A2

Tr[q/ (p+m)y

8

léab )
2

(52)—1:2.

V(K = m)] Tefy (' — M)y, (p + M)].

Neglecting the initial quark masses m, the only surviving traces are

M*Tr(vy,m)] = 32[(p-K") (k.p'

Te(y"pry" ) [Te (b ) —

Working out dot products from Mandelstam variables

(p-k") =

)+ (p.p'

5= (b4 )= (0 + K’

P= () = (k)

0= (- k) = ()~ k)
WH =" (k)= () =
(p-k) = g (v'K) = % — M

and introducing oy as ¢? = 4ma, we arrive at

Myil* =

6472

o[(0 — M?)* + (i

Y(k.E') + M?*(p.k)]

— M?)? 4+ 25M?]

g %

A

§2

Using the expression for the cross section in CMS frame

where in our case

do

1 |py|

dQx

64%3\ o

| fl|2’

(13.20)

(13.21)

(13.22)

(13.23)

(13.24)

(13.25)

(13.26)

(13.27)

(13.28)

(13.29)

(13.30)

(13.31)



we find the expression for the differential cross section

A6y mol - 4M?

dcosf* 952 §
We see that the angular dependence vanishes as we are approaching the threshold for the tt
production. Finally after integration over the angle the cross section yields

(3 +4M?) + (5 — 4M?) cos®0"] . (13.32)

8 o2 . 4 M2

A~

B ggi(8) = o) (3+2M?). (13.33)

S

13.3 gg — tt cross section

This section should serve only as an illustration of what can cross sections look like and behave,
one should notice the angular dependence of different channels reflecting the structures in

propagators.
Having three diagrams in game, we have the diagonal 3, ¢, 4 channels contributions

gz M2 = D)2 )

M%EE=1 2 (13.34)
8 (M? —£)(M? — @) — 2M?*(M? + 1)
[MIEP = -n%a? - 13.35
8 (M? —£)(M? — @) — 2M?*(M? + 1)
M2 = —n°a? — (13.36)
3 ¢ (M? — 4)?
as well as three negative interference terms
2 2M2(5 — 4M?)
w2 — 222
M2 = 37 % O — ) (02 — ) (13.37)
M? —§)(M? —a)+ M?*(a— 1
prr (Mf_) - @-1) (13.39)
(M? —t)(M? —a) + M*(t — a)
|Msu 2 — —67 — —~ (1339)
§(M? —a)
The result of the integration over ¢ with
g 2
tmaw:MQ_f(l_ 1_4]\?>
2 §
a 2
tmm:MQ_g(l'f‘ 1_4]{4>
5
is (taken from Combridge, 1979)
) 7ra 31M2\ 1 4M? M* 1+

with
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quark-quark contribution to on shell tt production
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Figure 13.3: Differential cross section 6444 in pb as a function of cos #* and V5 in GeV.

quark—qua(k contribution to on shell tt production, integrated cross section
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Figure 13.4: Integrated cross section 045, in pb as a function of V5 in GeV.
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Figure 13.5: Feynman diagrams for the process gg — tt.

Gluon-gluon cos(theta) dependence, channels compared
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Figure 13.6: Differential cross section 6444 in pb as a function of cos §* for V§ = 600 GeV.
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Gluon-gluon sqrt(s) and costheta dependence
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Figure 13.7: Differential cross section ¢44_,4 in pb as a function of cos #* and V% in GeV.

GILicéni—gluon contribution to tt production, integrated cross section
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Figure 13.8: Integrated cross section G444 in pb as a function of V5 in GeV.
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Chapter 14

Useful relations

14.1 Relativistic kinematics

B = velocity m =rest mass
E:\/ﬁ2+m2 EFE=T4+m T:(q/—l)m
E =~ym p=pym g =

Table 14.1: Basic kinematics formulse

14.2 Transformation properties of rapidity

The rapidity of a particle with respect to the z axis is defined as

1 E+p,
=1 . 14.1
y 2n<E_pz> (14.1)

Let us suppose a boost along the z axis so that
E"=~(E - Bp:)
piz - 'Y(pz - 6E) :

Then the transformed rapidity is

J = lln (E—ﬁszrpz—ﬁE) - lln <E+pz ﬂ) . (14.2)
2 E_ﬁpz_pz+ﬁE 2 E_pzl—’_ﬂ

Inverting the hyperbolic tangent

eV —e ¥ -1

ev+ey e+1




we get

1
arctanh z = In e , (14.3)
1—=2x
so we see that
Y =y+In 1-5 =y — arctanh 3. (14.4)

1+ 0

Thus when given the number of events as a function of rapidity, the rapidity distribution
remains unchanged

dN(y) _ dN'(y)
dy —  dy
Another often used quantity is the pseudorapidity

0
n = —Intan 3" (14.5)

Following limit holds: y — n for m < F and 0 > %

14.3 Some useful relations for QFT calculations
e Conventions for scattering and invariant amplitudes:
Spi = 65 — i(2m)*6W (P — B) Ty,

S =({f1S1)  (fli) =05

ng+n;
Mfz = sz H (271')3/2\/ 2E]
j=1

dimensionality : [Mp] = M*™", n=ns+n;

with the fields normalisations (here for example in case of a charged fermion)

p; s)u(p, s)e 7 + ' (p, s)v(p, s)e™]

| %

Lorentz invariant phase space:

ALips, (i) = (216 (Br = P) [ gy
j=1

E3

1
Two body phase space: — P
41 /s

e Dirac equation, positive and negative plain wave solutions:
(iv*0, —m)y(x) =0
("} =20"  alp) = ul(p)v

S7



YoV =y ¢ = diag(1,-1,-1,-1,-1)
In the standard realisation of the Clifford algebra

¥y = u(p)e P ) = v(p)e??
(p —m)u(p) =0 (p +m)v(p) =0
u(p)u(p) = 2m v(p)v(p) = —2m

e Projectors on energy and spin eigenstates (s = Y9172, {75, Yu}=0)

Spin fourvector satisfies : (s.p) =0 s*=-1
ulp, )ilp,5) = H(p+m)(1L+754)
o(p)oprs) = o (p-m)(1+h)

S ulp,s)ilp.s) = (p+m)

+s

Y vps)olps) = (p—m)

+s

e Projectors on energy and helicity eigenstates (A = +3)
_ 1
ulp, Aa(p, A) = 5 +m)(1+2Xys)

o N0 ) = 5= m)(1 +2)s)

Spin fourvectors for describing helicity states, m # 0

k| E k
sr(k) = (E’ E@ sp(k) = —sgr(k)
e Chiral components:
1 1
uRE§(1+75)u uLE§(1—75)u
1 1
URE§(1—’Y5)U ULE§(1+’Y5)U
1 1
UL’ELL:§p(1+’Y5) ’ULT)L—Ep(l—’YE,)
_ 1 1
URUR = 5?(1—%) VRUR = 5?(1+75)



e Trace theorems (the Feynman symbol: ¢ = a,7")

Tr(qilf

Tr(gpgd
Tr(dy,byvo) Tr(¢ry dy’
Tr(dy,bv075) Te (¢ dy s
Te(dy,byo75) Tr(gr dy”
Tr(Vu Yo Vo s

— e e N e S

4 (a.b)

4 [(a.b)(c.d) — (a.c)(b.d) + (a.d)(b.c)]
32 [(a.c)(b.d) + (a.d)(b.c)]

32 [(a.c)(b.d) — (a.d)(b.c)]

0

4i€uupo’ with €0123 — 1

e Relations for reducing the number of v matrices:

Yuy*
YVud "
Vul by
Tudb g
Tuthfdr*

4

—24

4(a.b)

—2¢bd
2(bédd — dd¢h)
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Chapter 15

Some historical milestones

15.1 Historical overview

Brief historical overview: (taken from Ronald Poling’s syllabus to “Intro to Nuclear and Particle
Physics”, http://www.physics.umn.edu/classes/s4511/Chronology.pdf)

1873 Maxwell’s theory of E&M.
1895 Rontgen’s discovery of X-rays.

1898 The Curies separate radioactive elements.Thomson measures electron e/m: proposes
”plum pudding” atom.

1900 Planck explains blackbody radiation with quantisation, but doesn’t believe it.

1905 Einstein explains photoelectric effect with light quantum and believes it (dual particle-
wave nature of photon).Einstein comes to grips with Maxwell, asserts that light speed is
c for all observers and follows this to inevitable consequences: equivalence of mass and
energy, special relativity.

1911 Rutherford interprets experiments of Geiger and Marsden. Alpha particles scattered at
large angles from gold show atom has small, dense, positively charged nucleus.

1913 Bohr constructs a theory of atomic structure based on quantum ideas.

1919 Rutherford presents evidence of proton: heavier nuclei composed of hydrogen nuclei.
1921 Chadwick and Bieler suggest ”strong force” holding the nucleus together.

1923 Compton confirms particle nature of photon (X-ray).

1920’s Quantum mechanics developed by Bohr, Schrédinger, de Broglie, Pauli, Born, Heisen-
berg, and (combining quantum mechanics and special relativity) Dirac.

1927 Discovery of beta—decay, with continuous energy spectrum that led to...
1930 Pauli’s suggestion of neutrino carrying off the rest of the energy in beta—decay.

1931 Chadwick discovers neutron, launching intensive study of nuclear binding and decay.
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1933 Anderson discovers the positron, recognised as positively-charged counterpart to the
electron. This is the first demonstration of antimatter, predicted by Dirac.

1934 Fermi presents theory of beta decay, introducing the weak interaction.

1935 Yukawa describes nuclear interactions by exchange of particles “mesons”) between pro-
tons and neutrons. From nuclear size, Yukawa concludes mass of mesons ~200 electron
masses.

1937 Muon discovered in cosmic rays, mistakenly identified as Yukawa’s meson.

1947 Muon recognised as incompatible with being Yukawa’s meson, classified as a lepton, a
heavier copy of the electron. Rabi complains “Who ordered that?”

1947 Pion (meson) discovered in cosmic rays, based on strong interactions in matter declared
to be the true Yukawa meson.

1947 ... Feynman, Schwinger, Tomonaga, and others develop quantum electrodynamics: pro-
cedures to calculate electromagnetic interactions, properties of electrons, positrons, and
photons. Tools include Feynman diagrams.

1948 The Berkeley synchro-cyclotron produces the first artificial pions, followed by neutral
pion discovery in 1950.

1949 K* meson discovered, begins parade of ”strange” particles: ”V” particles (A° and K?°)
in 1951, "delta” particles (A*T, At A% and A7) in 1952.

1952 Glaser invents bubble chamber, Brookhaven Cosmotron (1.3 GeV protons), starts oper-
ation, begins population explosion of ”particle zoo.”

195357 Scattering of electrons on nuclei measures charge density distribution inside protons
and neutrons, with hints of internal structure.

1954 Yang and Mills formulate general framework of ”gauge theories,” basic element of Stan-
dard Model.

1955 Berkeley Bevatron starts operation; Chamberlain and Segre discover antiproton.

1956 Lee and Yang speculate that weak interaction might violate parity conservation (mirror
symmetry) and C.S. Wu quickly demonstrates it in Cobalt—60 beta decays.

1957 Schwinger, Glashow, others lay foundations for unification of electromagnetic and weak
interactions, including (although not naming) the weak intermediate vector bosons W+
and W~.

1961-64 Gell-Mann, Ne’eman, Zweig postulate quarks (u, d, s) to explain the zoo of particles
and their regular patterns. (Think Mendeleev.)

1962 Lederman, Schwartz, Steinberger verify two distinct types of neutrinos (electron and
muon neutrinos).

1964 Glashow, Bjorken speculate about existence of a fourth quark, dubbing it charm (c).

1965 Cronin and Fitch observe C'P violation in K-meson decays.
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1965 Greenberg, Han, Nambu introduce the quark property of colour charge. This be-
comes the basis for development in early '70’s of strong interaction theory, QCD, showing
”asymptotic freedom (Politzer, Gross, Wilczek).

1967 Weinberg, Salam independently propose unification of electromagnetic and weak inter-
actions (electroweak). Theory predicts existence of a neutral vector boson Z°.

1969 Bjorken and Feynman interpret ”deep inelastic scattering” data (electrons on nuclei at
SLAC) as demonstrating point-like constituents of the proton. Cautious interpretation:
”partons,” not yet demonstrated to be the hypothetical quarks.

1973 Observation of "neutral currents”: weak interactions with no charge exchanged, indi-
cating mediation by Z°.

1974 J/1 particle composed of charm and anti-charm quarks observed independently by
Richter at SLAC and Ting at Brookhaven.

1976 Goldhaber and Pierre find the D meson (anti-up and charm quarks) at SLAC.
1976 The tau lepton is discovered by Perl and collaborators at SLAC.

1978 Lederman and collaborators at Fermilab discover the b-quark.

1979 Evidence for gluon (strong interaction mediator) emission at DESY.

1983 Discovery of W= and Z° at CERN by group led by Rubbia.

1989 Measurement of Z° width at LEP (CERN) demonstrates exactly three generations of
quarks and leptons.

1995 Discovery of the top quark at Fermilab by the CDF and D@ experiments.

1998 Observation of neutrino oscillations (i.e. nonzero neutrino mass) by Super-K collabora-
tion.

2000 Observation of the tau neutrino by Lundberg, Fermilab
2000-1 Observation of C'P violation using B-mesons by BABAR, BELLE experiments.

15.2 On the latest discovered elementary particle

Perhaps surprisingly for someone, this is not the famous top quark, but ...(Physics News
Update, The American Institute of Physics Bulletin of Physics News Number 495 (Story #1),
July 20, 2000 by Phillip F. Schewe and Ben Stein,
http://www.aip.org/enews/physnews/2000/split /pnu495-1.htm)

... “the evidence for the tau neutrino is slim but impressive: five scattering
events are being exhibited at the seminar by Fermilab physicist Byron Lundberg,
leader of Experiment 872, the Direct Observation of Nu Tau (or DONUT) collab-
oration (http://fm872.fnal.gov/). Their experiment proceeds in the following man-
ner. Fermilab’s 900-GeV proton beam (the highest beam energy in the world) was
steered onto a tungsten target, where some of the prodigious incoming energy is
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turned into new particles. Some of these quickly decay into taus and tau neutrinos.
Next comes an obstacle course of magnets (meant to deflect charged particles away)
and shielding material (meant to absorb most of the other particles except for rarely
interacting neutrinos). Beyond this lies a sequence of emulsion targets in which the
neutrinos can interact, leaving a characteristic signature.

Evidence for a tau neutrino in the emulsion is the creation of a tau lepton, which
itself quickly decays (after travelling about 1 mm) into other particles. The E872
physicists estimate that about 1014 tau neutrinos entered the emulsion, of which
perhaps 100 interacted therein. It is a carefully analysed handful of such events
that is now being presented to the public in evidence. The tau neutrino is the third
neutrino type to be detected. The detection of the electron neutrino by Clyde Cowan
and Frederick Reines garnered Reines the 1995 Nobel Prize for physics (Cowan had
died some years before). For discovering the muon neutrino, Leon Lederman, Melvin
Schwartz, and Jack Steinberger won the Nobel Prize in 1988.”
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